Εμφάνιση αναρτήσεων με ετικέτα clocks. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα clocks. Εμφάνιση όλων των αναρτήσεων

Κυριακή 31 Μαΐου 2015

Clocking the MSP430F5529 Launchpad, Part II: The Assembly Way

We have already discussed a nice way to clock your launchpad using the mspware library of functions provided by TI. How about trying the same thing in assembly language?

Assembly allows you precise control over the MCU although it is arguably more involved than plain C (or mspware assisted) programming. Let's revisit our previous clocking examples and try to implement them in MSP430 assembly.

Before we Start

To do any serious assembly work, you will need to study at least three documents:


The Family User's Guide shows all the appropriate registers and operations needed for tasks like setting the clocks, raising Vcore, working with timers, GPIOs and so on.  It also describes the internals of  the MSP430 and the assembly language instructions. The Assembly Language Tools User's Guide will get you started on the assembler provided with CCS. The F5529 datasheet provides info specific to the chip we are programming. There are also some nice tutorials available on the Internet to get you started with assembly programming on the MSP430.  And don't miss out on the examples installed on your development system either:
Have a look in C:\ti\msp430\MSPWare_2_00_00_XX\examples\devices\5xx_6xx (or wherever you installed mspware). Check for  folders named Assembly_CCS.  You may not find one for the F5529, but there are plenty of examples for other similar devices.

Default Clocks

As we already know, the default MSP430 clock is about 1MHz. Here is some code to prove it:

bis.b #BIT2,&P2DIR ; Set P2.2 as output
bis.b #BIT2,&P2SEL ; Set P2.2 as peripheral output
; P2.2 is multiplexed with SMCLK
; This will output SMCLK to P2.2
  bis.b #BIT7,&P7DIR ; Set P7.7 as output
bis.b #BIT7,&P7SEL ; Set P7.7 as peripheral output
; P7.7 is multiplexed with MCLK
; This will output MCLK to P7.7
                          ; P7.7 is not present in the headers
; of the launchpad. It is output pin 60
; on F5529. Top right corner ;)

bis.b #BIT7,&P4DIR ; Set P4.7 as output (Green LED)
bis.b #BIT0,&P1DIR ; Set P1.0 as output (Red LED)
mov.w #3787, R15 ; Delay parameters
  mov.w #22, R14
blink xor.b #BIT0,&P1OUT
call #delay
jmp blink

Download the complete project files here. 'Delay' is a subroutine that mimics the behavior of the __delay_cycles() intrinsic of the C compiler. With the values specified here (in R14 and R15 registers), delay will  waste about 250000 cycles (check out comments in the source code and you will figure it out) allowing us to watch the red LED blinking!

If you have a scope, you may connect it to P2.2 where SMCLK is output. Here is what you will see:


If you feel lucky, you may also probe (carefully!) port 7.7. This is MCLK (same frequency as SMCLK here). It is pin no 60 of the F5529, but it is not output on any header pin.

Direct clocking with Crystals

Clocking with crystals is mostly straightforward. Download the complete project files here. We connect the 32.768KHz crystal to ACLK and the 4MHz crystal to MCLK/SMCLK:

       bis.b #BIT4+BIT5,&P5SEL   ; Connect XT1 to P5.5, P5.4
                                ; by configuring the ports 
                                ; peripheral function
       bis.b #BIT2+BIT3,&P5SEL   ; Connect XT2 to P5.3, P5.2
                            ; by configuring the ports for
                            ; peripheral function

The crystal pins are multiplexed with GPIOs in F5529. We have to first select them as peripheral pins using the P5SEL register.

bic.w #XT1OFF, &UCSCTL6  ; Turn on XT1
bic.w #XT2OFF, &UCSCTL6  ; Turn on XT2

We then turn on the crystals, by clearing their OFF bits in the UCSCTL6 register. UCSCTLx registers define the behavior of many aspects of the Unified Clock System (UCS).

bis.w #XCAP_3, &UCSCTL6  ; Internal load capacitor for XT1

 We connect an appropriate capacitor to the low frequency XT1.

waitclear   bic.w   #XT2OFFG | XT1LFOFFG | DCOFFG, &UCSCTL7
; Clear XT2,XT1,DCO fault flags  (XT1 and XT2 only here)
            bic.w   #OFIFG,&SFRIFG1         ; Clear fault flags
            bit.w   #OFIFG,&SFRIFG1         ; Test oscillator fault flag
            jc      waitclear

We have to wait for the crystals to start and stabilize. We continuously clear and test the oscillator fault flag until it is no longer set.

     bic.w #XT1DRIVE_3,&UCSCTL6  ; XT1 is now stable, reduce drive
                                 ; strength. Low frequency crystals 
                                 ; take some time
                                 ; to start and stabilize
     bic.w #XT2DRIVE_0,&UCSCTL6  ; XT2 Drive strength reduced to
                                 ; level 0    
; for 4-8MHz operation

 Finally, we set the right drive strengths for both crystals. The low frequency crystal takes some time to start-up and stabilize. After this time, the drive strength is reduced. This prolongs the life of the crystal and also reduces power consumption.

We are now ready to assign the crystals to our clocks:

      mov.w #SELA_0|SELS_5|SELM_5,&UCSCTL4

UCSCTL4 is the register that sets the source for each clock (ACLK, SMCLK, MCLK). SELA_0 selects XT1 for ACLK, while SELS_5 and SELM_5 select XT2 for MCLK and SMCLK. You can easily see the difference by using your scope as before:



Also note the LED blinks a lot more rapidly now, as the MCLK frequency is 4MHz :)

Using the DCO and FLL

Going beyond the crystals we need to configure DCO and provide it with an FLL reference. Going above 8MHz also requires setting  Vcore to a higher level. Fortunately, there is an assembly language example in the samples provided by TI. We have implemented this as a subroutine and call it three times to set Vcore to the maximum level (download the complete project files here):

  mov.w #PMMCOREV_1,R12
call #setvcore
mov.w #PMMCOREV_2,R12
call #setvcore
mov.w #PMMCOREV_3,R12
call #setvcore

Here is a diagram showing the required Vcore by frequency, as shown in the F5529 datasheet. Launchpad supplies 3.3V to the F5529, so we can clock it up to its maximum operating frequency, as long as we raise PMMCOREV to 3:

 TI states that Vcore should only be raised one level at a time, hence the three separate calls here.

Having  connected and started the crystals in our previous example, we are halfway to our target already! 

; Default settings in UCSCTL3: SELREF = 000b -> FLLREF = XT1CLK
;                              FLLREFDIV = 000b -> FLLREFCLK / 1

bis.w   #SCG0,SR       ; Disable the FLL control loop
        clr.w   &UCSCTL0       ; Set lowest possible DCOx, MODx
        mov.w   #DCORSEL_7,&UCSCTL1   ; Select range for 20MHz
        mov.w   #FLLD_2 + 639,&UCSCTL2 ; Set DCO multiplier
                                       ; for DCOCLKDIV
        ; (FLLN + 1) * (FLLRef/n) * FLLD = DCOCLK
        ; FLLD_2 = 4
        ; FLLRef=32768 and n=1
        ; (n=FLLREFDIV)
        ; DCOCLKDIV = DCOCLK/FLLD = (FLLN+1)*(FLLRef/n)
        ; Default settings are DCOCLKDIV for MCLK/SMCLK

        bic.w   #SCG0,SR ; Enable the FLL control loop

UCSCTL3 contains important settings: The clock source to use for the FLLREF (default is the low frequency crystal, XT1CLK) and FLLREFDIV which allows FLLREFCLK to be further divided by 1, 2, 4, 8, 12 or 16. We just use the defaults here.

Before changing the DCO setting, we first disable the FLL control loop and clear the UCSCTL0 register. This register will be set automatically after we adjust the FLL parameters.  We need to look at the documentation of F5529 to choose the appropriate DCO range. The F5529 datasheet will help us find this one:



For 80MHz operation, we need to go up to the last range, DCORSEL_7 and store it in register UCSCTL1. We set the multiplier and frequency bits in UCSCTL2.

Multiplier is FLLD_2 which is 4
FLLN is 639.
Thus, DCOCLK =  (639+1) * (32768/1) * 4 = 83886080 Hz (84MHz)

DCOCLK is not used directly on MCLK/SMCLK (that would be one hell of an overclocking!). DCOCLKDIV is used instead:

DCOCLKDIV = DCOCLK / FLLD  = 83886080 / 4 =  20971520 Hz or about 21 MHz.


Although DCO is now set, the actual frequency will take sometime to stabilize.  Our delay subroutine comes handy again:

; Worst-case settling time for the DCO when the DCO range bits 
have been changed is n x 32 x 32 x F_fLLREFCLK cycles.
; n = FLLREFDIV
; 1 x 32 x 32 x 20.97152 MHz / 32.768 KHz = 655360  
; MCLK cycles for DCO to settle

mov.w #9930,R15
mov.w #22,R14
call #delay

; Total cycles: setup 6+6+2=14
; Internal Loop: 9930*3*22=655380
; Outer loop: 22*5 = 110
; Total: 110+655380+14 = 655504

And we also clear the oscillator fault flag and loop until it no longer sets itself:

; Loop until DCO fault flag is cleared

delay_DCO   bic.w   #DCOFFG,&UCSCTL7    ; Clear DCO fault flags
            bic.w   #OFIFG,&SFRIFG1     ; Clear fault flags
            bit.w   #OFIFG,&SFRIFG1     ; Test oscillator fault flag
            jc      delay_DCO

Finally, we assign the clock sources to their respective clocks (these are in fact the default settings for UCSCTL4):

mov.w #SELA_0|SELS_4|SELM_4,&UCSCTL4

Checking SMCLK with the oscilloscope:



For this last example, we have adjusted the  LED delay loop to 1 million cycles, so we can still watch it blinking!

Guess what - assembly is great for lots of happy afternoons :)

Κυριακή 12 Απριλίου 2015

Clocking the MSP430F5529 Launchpad

The MSP430F5529 Launchpad is a tinkerers dream! Powerful and complicated, will provide you with many happy afternoons ;) In this post we examine the UCS (Unified Clock System) and how you can use to it clock your Launchpad up to it's maximum speed.



The MSP430F5529 launchpad offers plenty of clock sources and three different clocks to work with:

  • MCLK, the Master Clock - Used for the CPU. Usually fast.
  • SMCLK, the Sub-Master Clock, used for peripherals. Usually fast (equal to MCLK, or a fraction of it).
  • ACLK, the Auxiliary clock, usually slow and used for peripherals when very low power is needed.

And what do you feed to these clocks?

  • VLOCLK: On-chip, very low frequency oscillator. Around 10 KHz and not accurate at all!
  • REFOCLK: Reference oscillator at the usual 32768 Hz (the common RTC frequency). Medium accuracy, again provided on chip.
  • DCO: Digitally Controlled Oscillator. On chip, fast oscillator source.
  • XT1: Onboard crystal at 32768 Hz (like REFOCLK but more accurate, since it is a crystal).
  • XT2: Onboard crystal at 4 MHz.


The above sources can be combined in a bewildering number of ways: different sources to different clocks, divided by a number of dividers or used to synthesize and fine tune the DCO up to the 25MHz maximum clock of the F5529.

Let's see how we can use and set these using the DriverLib (part of MSPWare) provided by TI.

Important Note: TI has changed some function names in the recent version of MSPWare. To follow our examples download the latest CCS (Code Composer Studio) and MSPWare (I've tried to show the differences in the listings).

Initial Investigation


What are the default clocks of your F5529 Launchpad if you make no settings at all? Let's investigate. Create an empty DriverLib project and paste the following code. Use the expression watch in the debugger to examine the values of the three variables (mclk, smclk, aclk):

#include "driverlib.h"

uint32_t mclk = 0;
uint32_t smclk = 0;
uint32_t aclk = 0;

int main(void) {
    WDT_A_hold(WDT_A_BASE);
    aclk=UCS_getACLK();
    mclk=UCS_getMCLK();
    smclk=UCS_getSMCLK();
    while (1);
    return (0);
}

And the results are:

  • MCLK: 1048576 Hz (1 MHz)
  • SMCLK: Same as MCLK
  • ACLK: 32768 Hz

If you never touched your launchpad clocks, you are only running at 1 MHz. We can do a lot better than that!

Setting Clocks using Internal Clock Sources (the simple way)


The two "simple" clock sources are the REFOCLK and the VLOCLK. In a pinch, you
can use some simple functions to change any of the clocks using them as sources. For example, setting the ACLK to use the REFOCLK:

#include "driverlib.h"

void initClocks();

uint32_t mclk = 0;
uint32_t smclk = 0;
uint32_t aclk = 0;

int main(void) {
    WDT_A_hold(WDT_A_BASE);
    initClocks();
    aclk=UCS_getACLK();
    mclk=UCS_getMCLK();
    smclk=UCS_getSMCLK();
    while (1);
    return (0);
}

void initClocks(){
    UCS_initClockSignal( // clockSignalInit in previous driverlib
UCS_ACLK,  // Set the auxiliary clock, using the
UCS_REFOCLK_SELECT, // reference oscillator (32768 Hz) and
UCS_CLOCK_DIVIDER_2 // divide it by this value.
    );
}

Using a divider of 2, yields an ACLK frequency of 16384. You are welcome to try other values for the divider (in powers of 2 up to 32) as well as trying to set MCLK and SMCLK the same way (just substitute UCS_ACLK with UCS_MCLK or UCS_SMCLK). The syntax is  no different with VLOCLK (from now on we only show different versions of the initClocks function):

void initClocks(){
    UCS_initClockSignal(
UCS_ACLK,
UCS_VLOCLK_SELECT,
UCS_CLOCK_DIVIDER_32
    );
}

With a clock divider of 32, we can go as low as 312 Hz!

Using the Crystals - The easy way


The crystals provide very accurate timing and their basic usage is very easy. We need to actually configure the pins where they are connected (they are normally configured for GPIO), start them, and then use them the same way we used the internal sources.

void initClocks(){
    // Important First Steps: Configure Pins for Crystals!
    // All to port P5
    // PIN5 -> XT1 OUT
    // PIN4 -> XT1 IN
    // PIN3 -> XT2 OUT
    // PIN2 -> XT1 IN

    GPIO_setAsPeripheralModuleFunctionInputPin(
GPIO_PORT_P5,
GPIO_PIN4+GPIO_PIN2
    );

    GPIO_setAsPeripheralModuleFunctionOutputPin(
GPIO_PORT_P5,
GPIO_PIN5+GPIO_PIN3
    );

    // YOU HAVE to inform the system of the crystal frequencies
    // You probably want to use #defines for these values

    UCS_setExternalClockSource(
32768,  // Frequency of XT1 in Hz.
4000000 // Frequency of XT2 in Hz.
    );

    // Initialize the crystals

    UCS_turnOnXT2( // was UCS_XT2Start in previous driverlib
UCS_XT2_DRIVE_4MHZ_8MHZ
    );

    UCS_turnOnLFXT1( //was UCS_LFXT1Start in previous driverlib
UCS_XT1_DRIVE_0,
UCS_XCAP_3
    );

    // Use the crystals to set the clocks

    UCS_initClockSignal(
UCS_MCLK,
UCS_XT2CLK_SELECT,
UCS_CLOCK_DIVIDER_1
    );

    UCS_initClockSignal(
UCS_SMCLK,
UCS_XT2CLK_SELECT,
UCS_CLOCK_DIVIDER_2
    );

    UCS_initClockSignal(
UCS_ACLK,
UCS_XT1CLK_SELECT,
UCS_CLOCK_DIVIDER_1
    );
}

We have just used the 4 MHz XT2 to set MCLK to 4 MHz and SMCLK to 2MHz. We also used the 32768 Hz XT1 to set ACLK.  This method will allows to clock our system up to the XT2 frequency of 4MHz. To clock up to the full 25 MHz we need to set the DCO, the Digitally Controlled Oscillator.

Setting the DCO


To set the DCO we must initialize the Frequency Locked Loop (FLL) inside the F5529 using either the crystals or the internal clock sources.  Let's try with the internal reference oscillator first (32KHz). We'll start with a few defines which should normally be at the top of your listing:

// MCLK = Master Clock (CPU)

#define MCLK_FREQ_KHZ 4000

// Reference frequency (Frequency Locked Loop)

#define FLLREF_KHZ 32

// Ratio used to set DCO (Digitally Controlled Oscillator)

#define MCLK_FLLREF_RATIO MCLK_FREQ_KHZ/FLLREF_KHZ

Our initClocks function now looks like this:

void initClocks(){
    UCS_initClockSignal(
UCS_FLLREF, // The reference for Frequency Locked Loop
UCS_REFOCLK_SELECT, // Select 32Khz reference osc
UCS_CLOCK_DIVIDER_1
    );

    // Start the FLL and let it settle
    // This becomes the MCLCK and SMCLK automatically

    UCS_initFLLSettle(
MCLK_FREQ_KHZ,
MCLK_FLLREF_RATIO
    );

    /* Option: Further divide the frequency obtained for DCO

    UCS_initClockSignal(
UCS_MCLK,
UCS_DCOCLKDIV_SELECT,
UCS_CLOCK_DIVIDER_4
    ); */

    // Set auxiliary clock

    UCS_initClockSignal(
        UCS_ACLK,
UCS_REFOCLK_SELECT,
UCS_CLOCK_DIVIDER_1
    );
}

We first initialize the FLL reference to the 32 KHz of the reference oscillator (REFOCLK). We then initialize the FLL itself and let it settle (the call returns when the FLL has acquired a stable frequency and all faults are cleared). When initFLLSettle completes, both MCLK and SMCLK are set to the frequency of the DCO. Optionally, we can use the DCOCLKDIV to set the clocks to fractions of the DCO. In a pinch, you could change just one line to speed up to 8 MHz:

#define MCLK_FREQ_KHZ 8000

Keep in mind that going to frequencies higher than 8 MHz requires you to set the core power mode. We are currently at PMM_CORE_LEVEL_0, the default core power mode. Insert this line at the top of the initClocks function:

PMM_setVCore(PMM_CORE_LEVEL_0);

and modify it according to the following table:

up to  8 MHz => PMM_CORE_LEVEL_0
up to 12 MHz => PMM_CORE_LEVEL_1
up to 20 MHz => PMM_CORE_LEVEL_2
up to 25 MHz => PMM_CORE_LEVEL_3

Not all frequencies are available at all operating voltages, but this is not a problem for Launchpad users which always run at the full 3.3V. If you try to set the frequency higher than the current core level would allow, the initFLLSettle function may never return.

We have used the on-chip reference oscillator as the source for the FLL reference. We can also use XT1 or XT2 for the same purpose.

Using XT1/XT2 as the FLL reference


Combining the knowledge we gained in the last two sections we can use either of the crystals as a reference for the FLL. Let's use XT2 to clock our Launchpad to a whopping 20 MHz.

Our initial defines are as follows (delete the ones defined previously if you wish to test this):

// Desired MCLK frequency

#define MCLK_FREQ_KHZ 20000

// On board crystals frequencies (in Hz)

#define XT1_FREQ 32768
#define XT2_FREQ 4000000

#define XT1_KHZ XT1_FREQ/1000
#define XT2_KHZ XT2_FREQ/1000

// Ratio used to set DCO (Digitally Controlled Oscillator)
// We are setting the FLL reference to 1 MHz (XT2/4)
// Remember to use the same divider in UCS_initClock

#define MCLK_FLLREF_RATIO MCLK_FREQ_KHZ/(XT2_KHZ/4)

Our initClocks function is now a little more involved:

void initClocks(){

  // Set core power mode

  PMM_setVCore(PMM_CORE_LEVEL_3);

    // Connect Pins to Crystals

    GPIO_setAsPeripheralModuleFunctionInputPin(
GPIO_PORT_P5,
GPIO_PIN4+GPIO_PIN2
    );

    GPIO_setAsPeripheralModuleFunctionOutputPin(
GPIO_PORT_P5,
GPIO_PIN5+GPIO_PIN3
    );

First we set the power mode to the highest one (level 3) for 20 MHz operation.
Then we set the pins where the crystals are connected.

    // Inform the system of the crystal frequencies

    UCS_setExternalClockSource(
XT1_FREQ,  // Frequency of XT1 in Hz.
XT2_FREQ   // Frequency of XT2 in Hz.
    );

    // Initialize the crystals

    UCS_turnOnXT2( 
UCS_XT2_DRIVE_4MHZ_8MHZ
    );

    UCS_turnOnLFXT1(
UCS_XT1_DRIVE_0,
UCS_XCAP_3
    );

We inform the system of the crystal frequencies and initialize the two crystals (For failsafe operation you are advised to check the 'WithTimeout' variants of these functions).

  UCS_initClockSignal(
UCS_FLLREF,  // The reference for Frequency Locked Loop
UCS_XT2CLK_SELECT,  // Select XT2
UCS_CLOCK_DIVIDER_4 // FLL ref. will be 1 MHz (4MHz XT2/4)
  );

We set the FLL reference frequency to 1 MHz by dividing the XT2 frequency by 4. We have already accounted for that in our MCLK_FLLREF_RATIO.

  UCS_initFLLSettle(
MCLK_FREQ_KHZ,
MCLK_FLLREF_RATIO
  );

We initialize the FLL and wait for it to settle. This will set the DCO (and subsequently, MCLK and SMCLK) to our desired frequency of 20 MHz. Optionally, we can set SMCLK to a lower frequency by using the DCOCLKDIV:

    // Optional: set SMCLK to something else than full speed

  UCS_initClockSignal(
UCS_SMCLK,
UCS_DCOCLKDIV_SELECT,
UCS_CLOCK_DIVIDER_1
  );

Finally, we set the ACLK as well:

  // Set auxiliary clock

  UCS_initClockSignal(
UCS_ACLK,
UCS_XT1CLK_SELECT,
UCS_CLOCK_DIVIDER_1
  );
}

You may download this final complete example here.
Happy programming!